On Dynkin and Klyachko Idempotents in Graded Bialgebras

Frédéric Patras
CNRS UMR 6621, Université de Nice, Mathématiques, Parc Valrose, 06108 Nice Cedex 2, France
E-mail: patras@math.unice.fr

and

Christophe Reutenauer¹
IRMA, 7, rue rené Descartes, 67084 Strasbourg, France
E-mail: reutenau@math.u-strasbg.fr

Received June 15, 2001; accepted August 29, 2001

1. INTRODUCTION

Let $X = \{x_1, \ldots, x_n, \ldots\}$ be an infinite alphabet. The tensor algebra on X has canonically the structure of a Lie algebra and its Lie subalgebra generated by the elements of X identifies with the free Lie algebra on X. The structures of the tensor algebra and of the free Lie algebra are closely related to certain permutation statistics, as emphasized, e.g., in [8, 17]. In this setting, the Dynkin and Klyachko idempotents are fundamental tools. For example, they reduce the construction of basis of the free Lie algebra to the study and counting of given words, such as Lyndon words.

The purpose of the present article is to show that these constructions, which could be thought of as intrinsically related to the combinatorics of the tensor bialgebra, generalize in fact to all graded connected cocommutative bialgebras. Recall that, by the Cartier–Milnor–Moore theorem, these bialgebras are, up to isomorphism, the enveloping algebras of graded connected Lie algebras. We establish in particular a Baker-like identity and describe explicitly the kernels of the natural generalizations to these bialgebras of the Dynkin and Klyachko operators (Theorem 16, Corollary 7, and Theorem 6).

¹Current address: Mathématiques UQAM Montréal (Québec) CP 8888 suce A, Canada H3C5P8.
This provides new computational and conceptual tools for studying these bialgebras. A striking consequence is the following: it is a well-known property of the free Lie algebra that its bases are canonically in bijection with prime circular words; the generalized Klyachko idempotent allows one to extend this property to each graded bialgebra. As an application, we construct a Klyachko basis of the free partially commutative Lie algebra that is parameterized by prime conjugation classes or, equivalently, by Lalonde’s Lyndon elements in the free partially commutative monoid.

These results rely on two general ideas that seem to be interesting on their own. First, we introduce the notion of pseudo-coproducts for the endomorphisms of a graded bialgebra. It appears to be the right generalization to endomorphisms of the usual coproduct on the descent algebra [10, 14]. In particular, pseudo-coproducts are compatible in a strong sense (see Theorem 2) with the two natural products on the endomorphisms (the convolution and the composition products). The second key ingredients are certain remarkable and intriguing circular identities (see Corollary 10). When interpreted as cyclotomic identities, they yield the properties of the generalized Klyachko idempotents. In the course of the proof, we also generalize the Klyachko congruences [12, 17, p. 198] on the major index of a permutation.

As the referee has pointed out, the fact that the endomorphisms we introduce are idempotents may be deduced from the usual case of the descent algebra of the symmetric group, by a universal property of the latter. However, this universal approach does not provide the computation of the kernels. Since this computation is one of the main goals of the article, we have preferred to work the theory from the beginning in the setting of bialgebras, using as a main tool the convolution algebra of the bialgebra. The referee also points out that the Dynkin and the Klyachko idempotents that we construct may be interpolated by a single \(q \)-analogue (see [11, Section 6.4]).

2. PSEUDO-COPRODUCTS

Let \(A \) be a cocommutative bialgebra over a field \(F \) of characteristic 0. We denote by \(\epsilon: F \rightarrow A \) the unit of \(A \), by \(\eta: A \rightarrow F \) the counit, by \(\delta: A \rightarrow A \otimes A \) the coproduct, and by \(\pi: A \otimes A \rightarrow A \) the product. On \(\text{End}(A) \) there exists the associative convolution product \(* \), defined by \(f * g = \pi \circ (f \otimes g) \circ \delta \), for which \(\nu := \epsilon \circ \eta \) is the neutral element. Recall that an element \(a \) of \(A \) is primitive if \(\delta(a) = a \otimes 1 + 1 \otimes a \); the set of primitive elements is denoted by \(\text{Prim}(A) \); it is a Lie subalgebra of \(A \).

It happens that certain convolution subalgebras of \(\text{End}(A) \) have a coproduct \(\Delta \) in such a way that they become a bialgebra. The most classical
example is the descent algebra: A being the tensor bialgebra over an infinite dimensional vector space, the descent algebra is generated as a convolution algebra by the graded projections of A. The coproduct Δ has moreover the compatibility property

$$\Delta(f) \circ \delta = \delta \circ f,$$

for any element f of the subalgebra under consideration.

However this situation is rather rare. Even in the case of descent algebras of graded bialgebras (see [16]), there is not always a coproduct Δ satisfying (*): see the Appendix for a counter-example. This justifies the following definition.

Definition 1. An element f of $\text{End}(A)$ admits $F \in \text{End}(A) \otimes \text{End}(A)$ as a pseudo-coproduct if $F \circ \delta = \delta \circ f$. If f admits the pseudo-coproduct $f \otimes \nu + \nu \otimes f$, we say that f is pseudo-primitive.

In general, an element of $\text{End}(A)$ may admit several pseudo-coproducts. However, this concept is very flexible, as is shown in the following result.

Theorem 2.

- If f, g admit the pseudo-coproducts F, G and $\alpha \in F$, then $f + g, \alpha f, \alpha g$ admit, respectively, the pseudo-coproducts $F + G, \alpha F, F \star G, F \circ G$, where the products \star and \circ are naturally extended to $\text{End}(A) \otimes \text{End}(A)$.
- An element $f \in \text{End}(A)$ takes values in $\text{Prim}(A)$ if and only if it is pseudo-primitive.

Proof. 1. Let $F = \sum_{i \in J} f_i^1 \otimes f_i^2$ and let $G = \sum_{j \in J} g_j^1 \otimes g_j^2$. In the rest of the article, we use the Sweedler conventions to abbreviate such expressions to $F = \sum f_i \otimes f_2$ and $G = \sum g_1 \otimes g_2$. For example, we shall write $F \otimes G = \sum f_i \otimes f_j \otimes g_i \otimes g_j$ instead of $\sum_{i,j} f_i^1 \otimes f_j^2 \otimes g_i^1 \otimes g_j^2$ and so on. Then we have

$$F \star G = \sum (f_i \otimes f_j) \star (g_i \otimes g_j)$$

$$= \sum (f_i \ast g_1) \otimes (f_2 \ast g_2)$$

$$= \sum (\pi \circ (f_i \otimes g_1) \circ \delta) \otimes (\pi \circ (f_2 \otimes g_2) \circ \delta)$$

$$= \sum (\pi \otimes \pi) \circ (f_i \otimes g_1 \otimes f_2 \otimes g_2) \circ (\delta \otimes \delta)$$

$$= \sum (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (f_1 \otimes f_2 \otimes g_1 \otimes g_2)$$

$$\circ (I \otimes T \otimes I) \circ (\delta \otimes \delta),$$

where I denotes the identity of A and $T(a \otimes b) = (b \otimes a)$. Thus

$$F \star G = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (F \otimes G) \circ (I \otimes T \otimes I) \circ (\delta \otimes \delta).$$
Denote by $\delta^i[\cdot]: A \to A^{\otimes i}$ the ith iterated coproduct on A and by $\pi^i[\cdot]$ the ith fold product of A. In particular, $\delta^4[\cdot] = (\delta \otimes \delta) \circ \delta$. Since A is cocommutative, we have $(I \otimes T \otimes I) \circ \delta^4[\cdot] = \delta^4[\cdot]$. Thus

$$(F \ast G) \circ \delta = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (F \otimes G) \circ (I \otimes T \otimes I) \circ (\delta \otimes \delta) \circ \delta = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (F \otimes G) \circ (\delta \otimes \delta) \circ \delta = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ ((\delta \circ f) \otimes (\delta \circ g)) \circ \delta,$$

since f, g have pseudo-coproducts F, G. Hence

$$(F \ast G) \circ \delta = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (\delta \otimes \delta) \circ (f \otimes g) \circ \delta = \delta \circ \pi \circ (f \otimes g) \circ \delta,$$

since δ is an algebra endomorphism of A. Finally

$$(F \ast G) \circ \delta = \delta \circ (f \ast g),$$

what was to be shown.

The other assertions are easier and are left to the reader.

2. Since η is the counit of A, we have for any element a of A:

$$(I \otimes \nu + \nu \otimes I) \circ \delta(a) = a \otimes 1 + 1 \otimes a. \text{ Hence } (f \otimes \nu + \nu \otimes f) \circ \delta(a) = f(a) \otimes 1 + 1 \otimes f(a). \text{ Therefore the image of } f \text{ is contained in } \text{Prim}(A) \text{ if and only if } \delta \circ f = (f \otimes \nu + \nu \otimes f) \circ \delta, \text{ what was to be shown.}$$

As an application of pseudo-coproducts, we give a short proof of a result of Gelfand et al. [10, Corollary 5.17]. We consider the descent algebra Σ of the tensor bialgebra A on an infinite dimensional vector space V: as a subalgebra of $\text{End}(A)$ with convolution, Σ is generated by the graded projections $p_n: A \to A_n$, viewed as elements of $\text{End}(A)$. It is a bialgebra, with coproduct defined by $\Delta(p_n) = \sum_{i+j=n} p_i \otimes p_j$; cf. [10, 14].

Corollary 3. An element f of Σ_n is primitive if and only if its image is contained in $\text{Prim}(A)$. In this case, it is quasi-idempotent: that is, $f^2 = \alpha f$ for some scalar α.

Proof. Note that $\Delta(p_n)$, as defined above, is a pseudo-coproduct for p_n. Since pseudo-coproducts are by the theorem closed under convolution, since the p_n generate Σ as a convolution subalgebra of $\text{End}(A)$, and since Σ is a bialgebra, we deduce that for any $f \in \Sigma$, $\Delta(f)$ is a pseudo-coproduct for f.

If $f \in \Sigma_n$ is primitive, f is therefore also pseudo-primitive and the theorem shows that $\text{Im}(f) \subset \text{Prim}(A)$. Conversely, if this holds, then f has the pseudo-coproducts $f \otimes \nu + \nu \otimes f$ (by the theorem) and $\Delta(f)$ (by what has
just been said). But the equation $F \circ \delta = \delta \circ f$ determines $F \in \text{End}(A) \otimes \text{End}(A)$ uniquely, by Schur–Weyl duality, since V' has infinite dimension. Hence both pseudo-coproducts are equal and f is primitive.

Now, by definition of Σ, f is a linear combination of products $p_I = p_{i_1} \cdots p_{i_k}$, where the i_j are positive integers which add up to n. If $k > 1$ and a is in $\text{Prim}(A)_n$, we have $p_I(a) = \pi^k \circ (p_{i_1} \otimes \cdots \otimes p_{i_k}) \circ \delta^k(a) = 0$, since $\delta^k(a) = a \otimes 1 \otimes \cdots \otimes 1 + 1 \otimes a \otimes \cdots \otimes 1 + \cdots \otimes a$. Thus $f(a) = aa$, where a is the coefficient of p_n in the linear combination. This concludes the proof.

3. THE DYNKIN IDEMPOTENT

Let A be a graded cocommutative Hopf algebra over the field F of characteristic 0, with $A_0 = F$ (that is, A is connected). Define D in $\text{End}(A)$ by $D(a) = na$ if $a \in A_n$. Now define $l \in \text{End}(A)$ by

$$l(a) = S \ast D,$$

where S is the antipode of A, that is, the inverse of the identity of A in the convolution algebra.

In the classical case, A is the tensor bialgebra over an infinite dimensional vector space or equivalently the algebra of noncommutative polynomials in infinitely many variables, the latter being primitive. In this case l is the Dynkin operator that maps $x_1 \ldots x_n$ onto the Lie polynomial $[\cdots [[x_1, x_2], x_3], \ldots, x_n]$, for any variables x_1, \ldots, x_n. The definition $l = S \ast D$ of the Dynkin operator is essentially due to von Waldenfels [19]; see also [17, Theorem 1.12].

The next result is the analogue of the theorem of Dynkin [7], Specht [18], and Weaver [20].

Theorem 4. If a is primitive, then $l(a) = D(a)$.

Proof. We have $l(a) = (S \ast D)(a) = \pi \circ (S \otimes D) \circ \delta(a) = \pi \circ (S \otimes D)(a \otimes 1 + 1 \otimes a) = \pi(S(a) \otimes D(1) + S(1) \otimes D(a)) = D(a)$, since $D(1) = 0$ and $S(1) = 1$.

Theorem 5. The image of l is contained in $\text{Prim}(A)$.

Proof. By Theorem 2, it is enough to show that l is pseudo-primitive. Note that $S \otimes S$ is a pseudo-coproduct for S. Indeed, $(S \otimes S) \circ \delta$ and $\delta \circ S$ are both anti-homomorphisms of A into $A \otimes A$, sending each $a \in \text{Prim}(A)$ onto $-a \otimes 1 - 1 \otimes a$; since A is graded cocommutative and connected, it is canonically isomorphic to the enveloping algebra of the Lie algebra of its primitive elements (Cartier–Milnor–Moore theorem) and in particular is generated by them as an algebra, and the property follows.
Furthermore, \(D = \sum_n np_n \); hence \(D \) admits the pseudo-coproduct \(D \otimes I + I \otimes D \), as is easily verified. Thus by Theorem 2, \(l \) admits the pseudo-coproduct \((S \otimes S) * (D \otimes I + I \otimes D) = (S * D) \otimes (S * I) + (S * I) \otimes (S * D) = l \otimes v + v \otimes l \). \[\square\]

The next result extends to all connected cocommutative graded bialgebras, Baker’s identity [1]; see also [17, p. 36]. We denote \(A_+ = \bigoplus_{n>0} A_n \).

THEOREM 6. For any \(a \) in \(A_+ \) and \(b \) in \(A \), one has \(l(al(b)) = [l(a), l(b)] \).

Before giving the proof, we derive two corollaries. The first one extends a result of Cohn [3].

COROLLARY 7. The kernel of \(l \) is spanned by 1 and the elements of the form \(al(a), a \in A \).

Proof. By Theorem 6, \(al(a) \) is in \(\text{Ker}(l) \). For the converse, it is enough to show that the kernel is spanned by the elements \(al(b) + bl(a), a, b \in A \). Since \(A \) is a graded cocommutative bialgebra, we may write for any \(a \) in \(A_n \): \(\delta(a) = a \otimes 1 + 1 \otimes a + \sum (a_1 \otimes a_2 \otimes a_3) \). Now \(l = S * D \); hence \(D = I * l = \pi \circ (l \otimes l) \circ \delta \). Thus \(na = \pi \circ (l \otimes l)(a \otimes 1 + 1 \otimes a + \sum (a_1 \otimes a_2 \otimes a_3)) = \pi(l(a) \otimes l(1) + l(1) \otimes l(a) + \sum l(a_1) \otimes l(a_2) + l(a_2) \otimes l(a_1)) = l(a) + \sum a_1 l_2(a_2) + a_2 l_1(a_1) \), which implies the result. \[\square\]

COROLLARY 8. If \(a_1, \ldots, a_n \) are homogeneous primitive elements of \(A \), then \(l(a_1 \cdots a_n) = \text{deg}(a_1) \cdots [a_1, a_2, a_3], \ldots, a_n \).

When \(A \) is the tensor algebra over a vector space \(V \) and the \(a_i \)'s are elements of \(V \), we recover the original definition of the Dynkin operator in the classical case, by means of left-to-right bracketing. Note the remarkable fact that the Dynkin idempotent outputs the degree of the first factor of the Lie monomial; it has to be compared to a result of [2, Theorem 1.5(b)]. Note that Corollary 8 is also proved, in the usual descent algebra, in [11]; the authors also have a \(q \)-analogue of this result (see Lemma 3.7 and 5.11 in this article).

Proof. If \(n = 1 \), it is Theorem 4. We then have by induction, Theorem 4 and Theorem 6:

\[
\begin{align*}
l(a_1 \cdots a_{n+1}) &= (1/\text{deg}(a_{n+1}))l(a_1 \cdots a_n l(a_{n+1})) \\
&= (1/\text{deg}(a_{n+1}))[l(a_1 \cdots a_n), l(a_{n+1})] \\
&= [l(a_1 \cdots a_n), a_{n+1}] \\
&= \text{deg}(a_1) \cdots [a_1, a_2, a_3], \ldots, a_{n+1}].
\end{align*}
\]
Corollary 9. If $a \in A_+$ and $b \in \text{Prim}(A)$, then $l(ab) = [l(a), b]$. In particular, $\text{Ker}(l) \cap A_+$ is a right A-submodule of A.

We give a convolutional proof of the generalized Baker's identity.

Proof of Theorem 6. Recall that T is the endomorphism of $A \otimes A$ sending $a \otimes b$ onto $b \otimes a$. We have to show that $\alpha = l \circ \pi \circ (I \otimes l)$ and $\pi \circ (l \otimes I) \circ (I \otimes I - T)$ coincide on $A_+ \otimes A$.

We use several facts:

1. δ is an algebra endomorphism, so that $\delta \circ \pi = (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (\delta \otimes \delta)$.
2. S is an anti-automorphism of A, so that $S \circ \pi = \pi \circ T \circ (S \otimes S)$ and $S \circ \nu = \nu$.
3. S sends each primitive element onto its opposite; thus $S \circ l = -l$.
4. D is a derivation of A, so that $D \circ \pi = \pi \circ (I \otimes D + D \otimes I)$ and $D \circ \nu = 0$.
5. l is pseudo-primitive; hence $\delta \circ l = (l \otimes \nu + \nu \otimes l) \circ \delta$.
6. $\pi \circ (\pi \otimes \pi) = \pi[4]$.
7. Denote by T' the endomorphism of $A^{\otimes 3}$ sending $a \otimes b \otimes c$ onto $c \otimes a \otimes b$; then $(T \otimes I \otimes I) \circ (I \otimes T \otimes I) = T' \otimes I$.

We obtain

$$\alpha = (S \ast D) \circ \pi \circ (I \otimes l)$$
$$= \pi \circ (S \otimes D) \circ \delta \circ \pi \circ (I \otimes l)$$
$$= \pi \circ (S \otimes D) \circ (\pi \otimes \pi) \circ (I \otimes T \otimes I) \circ (\delta \otimes \delta) \circ (I \otimes l)$$
$$= \pi \circ (\pi \otimes \pi) \circ (T \otimes I \otimes I)$$
$$\circ (S \otimes S \otimes I \otimes D + S \otimes S \otimes D \otimes I)$$
$$\circ (I \otimes T \otimes I) \circ (I \otimes l \otimes \nu + I \otimes I \otimes \nu \otimes l) \circ (\delta \otimes \delta)$$
$$= \pi[4] \circ (T \otimes I \otimes I) \circ (I \otimes T \otimes I)$$
$$\circ (S \otimes I \otimes S \otimes D + S \otimes D \otimes S \otimes I)$$
$$\circ (I \otimes I \otimes l \otimes \nu + I \otimes I \otimes \nu \otimes l) \circ (\delta \otimes \delta)$$
$$= \pi[4] \circ (T' \otimes I)$$
$$\circ (S \otimes I \otimes \nu \otimes (D \circ l) + S \otimes D \otimes (-l) \otimes \nu$$
$$+ S \otimes D \otimes \nu \otimes l) \circ (\delta \otimes \delta).$$
Now, A is a graded bialgebra, so that $(\nu \otimes I) \circ \delta(x) = 1 \otimes x$ for $x \in A$, and consequently, for any endomorphism f of A, $(\nu \otimes f) \circ \delta(x) = 1 \otimes f(x)$. Thus

$$\pi^{[4]} \circ (T' \circ I) \circ (S \otimes I \otimes \nu \otimes (D \circ l)) \circ (\delta \otimes \delta)(a \otimes b)$$

$$= \pi^{[4]} \circ (T' \otimes I) \circ (((S \otimes I) \circ \delta(a)) \otimes 1 \otimes (D \circ l))(b))$$

$$= \pi^{[3]} \circ (((S \otimes I) \circ \delta(a)) \otimes (D \circ l))(b))$$

$$= \pi^{[3]} \circ (S \otimes I \otimes (D \circ l)) \circ (\delta \otimes I)(a \otimes b).$$

We leave the similar computation of the two other terms to the reader; then

$$\alpha = \pi^{[3]} \circ (S \otimes I \otimes (D \circ l)) \circ (\delta \otimes I)$$

$$- \pi^{[3]} \circ (l \otimes S \otimes D) \circ (I \otimes \delta) \circ T$$

$$+ \pi^{[3]} \circ (S \otimes D \circ l) \circ (\delta \otimes I)$$

$$= \pi \circ (\pi \otimes I) \circ (S \otimes I \otimes (D \circ l)) \circ (\delta \otimes I)$$

$$- \pi \circ (I \otimes \pi)(l \otimes S \otimes D) \circ (I \otimes \delta) \circ T$$

$$+ \pi \circ (\pi \otimes I) \circ (S \otimes D \circ l) \circ (\delta \otimes I)$$

$$= \pi \circ ((\pi \circ (S \otimes I) \circ \delta) \otimes (D \circ l))$$

$$- (l \otimes (\pi \circ (S \otimes D) \circ \delta)) \circ T$$

$$+ (\pi \circ (S \otimes D) \circ \delta) \otimes l)$$

$$= \pi \circ (\nu \otimes (D \circ l) - (l \otimes l) \circ T + l \otimes l),$$

since $S \ast I = \nu$ and $S \ast D = l$. This ends the proof since ν vanishes on A_+. □

Remark. The operator l is the analogue of the operator “left-to-right bracketing.” There exists of course a symmetric version, corresponding to the “right-to-left bracketing.” Evidently it is given by $r = D \ast S$.

One can interpolate between l and r by defining $P = S^\circ \ast D \ast S^\beta$, where α, β are two elements of the ground field with $\alpha + \beta = 1$; note that the convolution power S° is defined using the usual binomial expansion of $(1 + x)^\circ$, once S is written as $S = \nu + S'$, where S' annihilates $A_{10} = F$. Then one proves, similarly to Theorem 4 and Theorem 5, that (1) if a is primitive, then $P(a) = D(a)$, and (2) the image of P is contained in $Prim(A)$.

The previous definitions of the operator P, interpolating between l and r, and its properties were obtained some time ago by Claudio Procesi and the second author, during a discussion on noncommutative symmetric functions.
4. CIRCULAR IDENTITIES

In this section we establish two sets of identities which have a circular symmetry. They will be used in the next section, but they have their own interest.

Let $s = (x_1, \ldots, x_p)$ be a sequence of elements of a field. We assume that the product $x_1 x_2 \cdots x_p$ is equal to 1 and that each subproduct is different from 1. Let t be a variable. The identity we want to prove is

$$\sum_{k \geq 0} t^k \sum_{p \geq 1} \frac{(x_{i+1} \cdots x_p)^k}{(1 - x_{i+1})(1 - x_{i+1} x_{i+2}) \cdots (1 - x_{i+1} x_{i+2} \cdots x_{i+p-1})}$$

$$= 1 + (-1)^{p-1} \frac{x_2 x_3^2 \cdots x_p^{p-1} t^p}{(1 - x_2 \cdots x_p t)(1 - x_3 \cdots x_p t) \cdots (1 - x_p t)(1 - t)},$$

where the subscripts have to be taken modulo p. For example, if $p = 3$, one has

$$\sum_{k \geq 0} \left[\frac{1}{(1 - x_1)(1 - x_1 x_2)} + \frac{x_3^k}{(1 - x_3)(1 - x_3 x_1)} + \frac{x_2 x_3^k}{(1 - x_2)(1 - x_2 x_3)} \right]^k$$

$$= 1 + \frac{x_2 x_3^2 t^3}{(1 - t)(1 - x_3 t)(1 - x_2 x_3 t)}.$$

Before proving these identities, we derive the following consequence, obtained by taking the coefficient of t^k in the previous identity, where again the subscripts have to be taken modulo p.

Corollary 10. Let x_1, \ldots, x_p be elements of a field such that the product $x_1 x_2 \cdots x_p$ is equal to 1 and that each subproduct is different from 1. For $k = 0, 1, \ldots, p - 1$,

$$\sum_{p \geq 1} \sum_{i \geq 1} \frac{(x_{i+1} \cdots x_p)^k}{(1 - x_{i+1})(1 - x_{i+1} x_{i+2}) \cdots (1 - x_{i+1} x_{i+2} \cdots x_{i+p-1})} = \delta_{0,k}.$$

Proof of the identity. Note that after eliminating x_1, the remaining x_i's are subject to no condition, except that their partial products have to be different from 1. The identity is then equivalent to that of a polynomial. So we can assume that the $p - 1$ remaining elements and t are free commuting variables; then we may expand the fractions into series and prove the identity. We have

$$\sum_{k \geq 0} \sum_{p \geq 1} \frac{(x_{i+1} \cdots x_p)^k}{(1 - x_{i+1})(1 - x_{i+1} x_{i+2}) \cdots (1 - x_{i+1} x_{i+2} \cdots x_{i+p-1})} (x_{i+1} \cdots x_p t)^k.$$
Note that \(x_{i+1}\cdots x_p x_1 = (x_2 \cdots x_i)^{-1}\) and that \(x_{i+1}\cdots x_p x_1\cdots x_{i-1} = x_i^{-1}\). Thus, since \((1-x^{-1})^{-1} = -x(1-x)^{-1}\), the previous sum is equal to

\[
\sum_{k \geq 0} \sum_{p \geq 1} (1-x_2 \cdots x_i) \cdots (1-x_j)(1-x_{i+1}) \cdots (1-x_{i+i} \cdots x_p)
\]

\[
= \sum_{p \geq 1} (-1)^{p-1} x_2 x_3 \cdots x_{i-1} (1-x_2 \cdots x_i) (1-x_{i+1}) \cdots (1-x_{i+i} \cdots x_p)(1-x_{i+i} \cdots x_{2p}).
\]

Now we expand into formal power series in the variables \(x_2, \ldots, x_p, t\) and obtain

\[
\sum_{p \geq 1} (-1)^{p-1} \sum_{0 \leq n_2 < \cdots < n_p < n} x_2^{n_2} \cdots x_p^{n_p} t^n.
\]

Denote by \(S_i\) the formal power series represented by the last summation and by \(L_i\) its support. A nice fact is that the coefficients of \(S_i\) are 0 or 1. Then for \(i \geq 2\), \(L_i = \{m = x_2^{n_2} \cdots x_p^{n_p} t^n | 0 \leq n_2 < \cdots < n_i, n_{i+1} \geq \cdots \geq n_p \geq n\}\) and \(L_1 = \{m | n_2 \geq \cdots \geq n_p \geq n\}\).

We verify that if \(i + 2 \leq j\), then \(L_i \cap L_j\) is empty. Indeed, since \(p > j - 1 \geq i + 1\), \(L_i\) is defined by conditions one of which is \(n_{j-1} \leq n_j\) and, since \(2 \leq j - 1\), \(L_j\) among others, by the condition \(n_{j-1} \leq n_j\).

Suppose now that \(i \neq 1, p\). We verify that then for each monomial \(m\) in \(L_i\), \(m\) is either in \(L_{i-1}\) or in \(L_{i+1}\). Indeed, if \(n_i < n_{i+1}\), then \(m\) is in \(L_{i+1}\); if on the contrary \(n_i \geq n_{i+1}\), then \(m\) is in \(L_{i-1}\).

We verify now that for \(m\) in \(L_1\), \(m\) is in \(L_2\) or \(m = 1\) and that if \(m\) is in \(L_p\), then \(m\) is in \(L_{p-1}\), except if \(m\) satisfies the condition \(0 < n_2 < \cdots < n_p < n\). This will imply the identity in view of

\[
\sum_{0 \leq n_2 < \cdots < n_p < n} x_2^{n_2} \cdots x_p^{n_p} t^n = \frac{x_2 x_3^2 \cdots x_p^{p-1} t^p}{(1-x_2 \cdots x_p t)(1-x_3 \cdots x_p t) \cdots (1-x_p t)(1-t)}.
\]

So, let \(m\) be in \(L_1\); then clearly \(m\) is in \(L_2\), except if \(n_2 = 0\) and then \(m = 1\). Finally, let \(m\) be in \(L_p\). If \(n_p \geq n\), then \(m\) is in \(L_{p-1}\); if \(n_p < n\), then \(0 < n_2 < \cdots < n_p < n\).

Let \(s = (x_1, \ldots, x_p)\). For \(\sigma \in \mathcal{S}_p\), denote by \(\text{Maj}_i(\sigma)\) the product

\[
\prod_{i \in \text{Des}(\sigma)} x_{\sigma(i)} \cdots x_{\sigma(i)},
\]

where \(\text{Des}(\sigma)\) is the descent set of \(\sigma\), that is, the set \(\{i, 1 \leq i \leq p-1, \sigma(i) > \sigma(i+1)\}\). Let \(\overline{\text{Des}}(\sigma)\) also be the set of circular descents of \(\sigma\), that is, the set \(\{i, 1 \leq i \leq p, \sigma(i) > \sigma(i+1)\}\), with numbers taken modulo \(p\). Let \(\overline{\text{Des}}(\sigma)\) denote the number of circular descents of \(\sigma\). In other word, descents are circular descents, and \(p\) is a circular descent if and only if \(\sigma(p) > \sigma(1)\).

Note that if the product of the \(x_i\) is equal to 1, a hypothesis which will be assumed in what follows, then \(\text{Maj}_i(\sigma)\) is also equal to the product \(\prod x_{\sigma(1)} \cdots x_{\sigma(i)}\) over all circular descents \(i\) of \(\sigma\).
LEMMA 11. Let γ be the p-cycle $(p, p - 1, \ldots, 1)$. If $x_1 \cdots x_p = 1$, then

1. $\bar{d}(\gamma) = \bar{d}(\sigma)$.
2. $\text{Maj}_{\gamma}(\sigma) = x_{\sigma(p)}^{\bar{d}(\sigma)} \text{Maj}_{\gamma}(\sigma)$.
3. $\text{Maj}_{\gamma}(\sigma) = x_{p} \text{Maj}_{\gamma}(\gamma^{-1} \sigma)$, where $s\gamma = (x_p, x_1, \ldots, x_{p-1})$.

Proof. Note that $\bar{D}(\sigma \gamma) = \{i + 1, i \in \bar{D}(\sigma)\}$, with numbers taken modulo p. Hence 1 follows. Moreover $\sigma(1) = \sigma(p)$ so that the product $\prod x_{\gamma r(1)} \cdots x_{\gamma r(i)}$ over all circular descents i of $\sigma \gamma$ is equal to $x_{\sigma(p)}^{\bar{d}(\sigma)} \text{Maj}_{\gamma}(\sigma)$. Hence 2 follows. Note that 3 is a circular descent of $\gamma^{-1} \sigma$ if and only if either i is a circular descent of σ and $\sigma(i) \neq p$ or $\sigma(i + 1) = p$ and in this case $i + 1$ is a circular descent of σ. If we put $s\gamma = (y_1, \ldots, y_p)$, then $y_{\gamma^{-1} \sigma(i)} = x_{\sigma(i)}$. Thus the product $\prod y_{\gamma^{-1} \sigma(1)} \cdots y_{\gamma^{-1} \sigma(i)}$ over all circular descents i of $\gamma^{-1} \sigma$ is equal to $x_{p}^{-1} \text{Maj}_{\gamma}(\sigma)$.

5. THE KLYACHKO IDEMPOTENT

The bialgebra A is as in Section 3. We assume here that the field F of scalars (which is of characteristic 0) contains a primitive nth root of unity ω_n for any $n \geq 1$. Denoting as before by p_n the graded projection $A \rightarrow A_n$, viewed as an element of $\text{End}(A)$, we write $p_C = p_{i_1} \cdots p_{i_j}$ for any composition $C = (i_1, \ldots, i_j), i_j \in \mathbb{N}$. Define elements r_C of $\text{End}(A)$ by the formula

$$p_C = \sum_{C' \leq C} r_{C'}$$

where $C' \leq C$ means that C is finer than C'; e.g., $(4, 3) \leq (2, 2, 1, 2)$. Note that these elements r_C are straightforward generalizations of well-known elements: descent classes of the symmetric group (cf., e.g., [17]) or non-commutative ribbon Schur functions (cf. [10]). Following a variant of the definition by Klyachko [12] (see also [17, p. 196]), we define $\kappa_n \in \text{End}(A)$ by

$$\kappa_n = \frac{1}{n} \sum_{|C| = n} \omega_n^{\text{maj}(C)} r_C,$$

where $|C| = i_1 + \cdots + i_j$ is the weight of C and $\text{maj}(C) = (l - 1)i_1 + (l - 2)i_2 + \cdots + i_{l-1} = i_1 + \max(i_1 + i_2, \ldots, i_1 + \cdots + i_{l-1})$ is the major index of C.

THEOREM 12. The image of κ_n is contained in $\text{Prim}(A)$.
Proof. We follow an elegant method of [10], which allows us to consider together all elements κ_n for each n.

Let q be a variable. We work within $\text{Endgr}(A)[[q]]$, where $\text{Endgr}(A) = \bigoplus_n \text{End}(A_n)$ gets the convolution product. Let $\sigma(q) = \sum p_n q^n$, the generating function of all graded projections, where q is a free variable. The infinite product,

$$\kappa(q) = \prod_{n \geq 0} \sigma(q^n),$$

in decreasing order, is well defined in $\text{Endgr}(A)[[q]]$.

Observe that each element of $\text{Endgr}(A)[[q]]$ has a unique expression as a sum $\sum_n f_n$, where $f_n \in \text{End}(A_n)[[q]]$.

We may determine these elements f_n for the element $\kappa(q)$, using exactly the same calculations as in [10, pp. 277–278]. One obtains

$$\kappa(q) = \sum_{n \geq 0} K_n(q) \left(\frac{q}{q_n}\right)_n,$$

with $(q)_n = (1 - q) \cdots (1 - q^n)$ and $K_n(q) = \sum_{|C|=n} q^{maj(C)} r_C$.

We extend the definitions of Section 2 and say that an element s of $\text{Endgr}(A)[[q]]$ admits the pseudo-coproduct $G \in (\text{Endgr}(A) \otimes \text{Endgr}(A))[[q]]$ if $G \circ \delta = \delta \circ s$, where δ extends naturally to $A[[q]]$ and an element of $\text{Endgr}(A)[[q]]$ (resp. $(\text{Endgr}(A) \otimes \text{Endgr}(A))[[q]]$) defines naturally a linear mapping $A \rightarrow A[[q]]$ (resp. $A \otimes A \rightarrow (A \otimes A) [[q]]$). Furthermore, we say that s is pseudo-group-like if $s \otimes s$ is a pseudo-coproduct for s (the last tensor product is taken over $F[q]$ and $(\text{Endgr}(A)[[q]] \otimes_F [q]$ $\text{Endgr}(A)[[q]]$ is identified with $(\text{Endgr}(A) \otimes \text{Endgr}(A))[[q]]$). Then it follows from Theorem 2 that a product of pseudo-group-like elements is pseudo-group-like. Moreover, when written in the form $s = \sum f_n$, s is pseudo-group-like if and only if each f_n admits $\sum_{i+j=n} f_i \otimes f_j$ as pseudo-coprodution (so that the sequence (f_n) could be called a sequence of pseudo-divided powers).

Since the $\sigma(q^n)$s are clearly pseudo-group-like elements, all this implies that for each n, $K_n(q)/(q)_n$ admits $\sum_{i+j=n} K_i(q)/(q)_i \otimes K_j(q)/(q)_j$ as pseudo-coproduct. Thus $K_n(q)$ has $\sum_{i+j=n} ((q)_n/(q)_n)(q)_i K_i(q) \otimes K_j(q)$ as pseudo-coproduct. For $q = \omega_n$ and $i, j \neq 0$, the polynomials $(q)_n/(q)_n$, $q_i K_i(q)$, $q_j K_j(q)$, $q_k K_k(q)$, in q all vanish, which implies that $K_n(\omega_n) = n \kappa_n$ is pseudo-primitive and the theorem follows from Theorem 2.

Corollary 13. κ_n is idempotent.

Proof. By the previous theorem, it is enough to show that if a is primitive, then $\kappa_n(a) = a$; we may even assume that a is homogeneous of degree n. We follow here the same way as [8, p. 336]. Since $p_C(a) = (p_i \ast \cdots \ast p_n)(a) = 0$ as soon as C has length $k = l(C) > 1$, we obtain from Eq. (1) that $r_C(a) = (-1)^{l(C)-1}a$, for each composition C of weight n.

Thus we obtain

\[n \kappa_n(a) = \sum_{|C|=n} \omega_n^{maj(C)} (-1)^{|C|-1} a. \]

By classical bijection between compositions of \(n \) and subsets of \(\{1, \ldots, n-1\} \), sending \(C = (i_1, \ldots, i_l) \) onto \(S = \{i_1, i_1+i_2, \ldots, i_1+\ldots+i_{l-1}\} \), with the property that \(maj(C) = maj(S) \) (=sum of the elements in \(S \)) and \(l(C) - 1 = |S| \), we obtain

\[n \kappa_n(a) = \left(\sum_{S \subset \{1, \ldots, n-1\}} \omega_n^{maj(S)} (-1)^{|S|} \right) a \]

\[= \left(\sum_{1 \leq i_1 < \cdots < i_l \leq n-1} \omega_n^{i_1+\ldots+i_l} (-1)^{l} \right) a \]

\[= \left(\prod_{1 \leq i \leq n-1} (1 - \omega_n^i) \right) a \]

\[= \left(\prod_{1 \leq i \leq n-1} (x - \omega_n^i) \right)_{|x| = 1} a \]

\[= ((1 + x + \cdots + x^{n-1})|_{x=1}) a = na, \]

since \(\omega_n \) is a primitive \(n \)th root of unity. \(\blacksquare \)

The original definition by Klyachko of \(\kappa_n \) gives its action on any word; equivalently, on a product of homogeneous Lie polynomials of degree 1. We extend this formula, by giving the action of \(\kappa_n \) on a product of arbitrary homogeneous primitive elements in a general graded connected cocommutative bialgebra. For this, we evaluate the element \(\kappa(q)(a_1 \cdots a_p) \), with the previous notations, where \(a_1, \ldots, a_p \) are homogeneous primitive elements of respective degree \(d_1, \ldots, d_p \), with \(d_1 + \cdots + d_p = n \). It follows from the definition of the convolution that it is a linear combination of permutations of the product \(a_1 \cdots a_p \).

So, let \(w \) be some permutation of \(a_1 \cdots a_p \) (by a usual abuse, we consider \(w \) simultaneously as a formal word and as an element of \(\mathcal{A} \)). Let \(w = u_1 \cdots u_l \) be the factorisation of \(w \) in maximal increasing words, for the natural order \(a_1 < \cdots < a_p \). Let \(C \) be the composition \((deg(u_1), \ldots, deg(u_l)) \).

Lemma 14. The coefficient of \(w \) in \(\kappa(q)(a_1 \cdots a_p) \) is \(q^{maj(C)} / \prod_{w=wv, u \neq 1} (1 - q^{deg(u)}) \).

Corollary 15. The coefficient of \(w \) in \(\kappa_n(a_1 \cdots a_p) \) is

\[\frac{\omega_n^{maj(C)}}{\prod_{w=wv, u \neq 1} (1 - \omega_n^{deg(u)})} = \frac{1}{n} \prod (1 - \omega_n^i) \omega_n^{maj(C)}, \]
where the second product is over all i such that w has no nontrivial proper left factor of degree i.

As an example, let $n = 4$ and let a_1, b_1, c_2 be primitive elements of degree equal to their subscript. Then by the corollary (with $i = 0$)

$$4\kappa(a_1 b_1 c_2) = i^4(1 - i^3)a_1 b_1 c_2 + i^3(1 - i^2)b_1 c_2 b_1 + i^2(1 - i)b_1 a_1 c_2 + i(1 - i^3)b_1 c_2 a_1$$

$$= (1 + i)a_1 b_1 c_2 - 2ia_1 c_2 b_1 + (i - 1)b_1 a_1 c_2$$

$$= 2ib_1 c_2 a_1 - (1 - i)c_2 a_1 b_1 + (i + 1) c_2 b_1 a_1$$

$$= (1 + i)[a_1, [b_1, c_2]] + (1 - i)[a_1, c_2], b_1].$$

Proof of the Corollary. We have $(q)_n\kappa(q)(a_1 \cdots a_p) = K_n(q)(a_1 \cdots a_p)$ and $n\kappa_n = K_n(\omega_n)$. Since $(q)_n/\prod_{w=w_0, w \neq 1}(1 - q^{\deg(a)}) = \prod(1 - q^i)$, with the i as above, and since $n = \prod_{1 \leq i \leq n-1}(1 - \omega^i_n)$, the corollary follows. □

Proof of the Lemma. One has

$$\kappa(q) = \sigma(q^3) \ast \sigma(q^2) \ast \sigma(q) \ast \sigma(1)$$

$$= \prod_{m \geq 0} \left(\sum_{i \geq 0} q^{im} p_i \right)$$

$$= \sum_{i_1, \ldots, i_r \geq 1, m_1 \geq \cdots \geq m_r \geq 0} q^{i_1 m_1 + \cdots + i_r m_r} p_{i_1} \ast \cdots \ast p_{i_r}.$$

Recall that $p_{i_1} \ast \cdots \ast p_{i_r}$ is equal to $\pi^{[r]} \circ (p_{i_1} \otimes \cdots \otimes p_{i_r}) \circ \delta^{[r]}$. Applied to $a_1 \cdots a_p$, this term gives the sum of all $v_1 \cdots v_r$, for all possible increasing non-trivial complementary subwords (that is, subsequences, if $a_1 \cdots a_p$ is viewed as a sequence) v_1, \ldots, v_r of $a_1 \cdots a_p$, of respective degree i_1, \ldots, i_r. Thus, the coefficient of w in $\kappa(q)(a_1 \cdots a_p)$ is equal to the sum

$$\sum_{w=v_1 \cdots v_r, m_1 \geq \cdots \geq m_r \geq 0} q^{m_1 \deg(v_1) + \cdots + m_r \deg(v_r)},$$

where the first sum is subject to the condition that the v_j are nontrivial increasing words. Putting $d_j = \deg(v_j)$, the second sum is equal classically to

$$q^{(r-1)d_1 + \cdots + d_{r-1}}$$

$$/ (1 - q^{d_1}) \cdots (1 - q^{d_1 + \cdots + d_r}).$$

Note that the v_j must necessarily be factors of the u_j, so that composition (d_1, \ldots, d_r) is finer than $C = (\deg(u_1), \ldots, \deg(u_l))$; thus, the searched coefficient is equal to

$$\sum_{E \geq D \geq C} q^{m(u)}$$

$$/ (1 - q^{d_1}) \cdots (1 - q^{d_1 + \cdots + d_r}).$$
where E is the composition determined by the degrees of the letters of w. We must show that this is equal to $q^{\maj(C)} / \prod_{w=\omega_{ur}, u\neq 1} (1 - q^{\deg(w)})$.

Equivalently, multiplying by $\prod_{w=\omega_{ur}, u\neq 1} (1 - q^{\deg(w)})$ and replacing compositions by subsets of $\{1, \ldots, n-1\}$ (with S corresponding to C and U to E) we find that

$$\sum_{S \subseteq T \subseteq U} \left(q^{\maj(T)} \prod_{i \in U-T} (1 - q^i) \right) = q^{\maj(S)}.$$

By inclusion–exclusion, this is equivalent to

$$\sum_{S \subseteq T \subseteq U} (-1)^{|T|-|S|} q^{\maj(T)} = \prod_{i \in S} q^i \prod_{j \in U-S} (1 - q^j),$$

which is easily shown to be true.

Theorem 16. The kernel of the restriction of κ_n to A_n is spanned by the elements of the form $ab - \omega_n^{-\deg(b)} ba$, $a, b \in A$.

Proof. Let a_1, \ldots, a_p be homogeneous primitive elements whose degrees add up to n. Using Corollary 15, we evaluate $\kappa_n(a_1 \cdots a_p)$ and then $\omega_n^{-\deg(a_p)} \kappa_n(a_1 \cdots a_{p-1})$.

Let w be as before Lemma 14; in the first expression of Corollary 15, the numerator is $\maj_s(\sigma)$, if we put $w = a_{\sigma(1)} \cdots a_{\sigma(p)}$, $\sigma \in S_p$, $s = (x_1, \ldots, x_p) = (\omega_{\deg(a_1)}, \ldots, \omega_{\deg(a_p)})$, with the notations of Section 4.

If a_1, \ldots, a_p are replaced by b_1, \ldots, b_p, then $w = b_{\gamma^{-1}(1)} \cdots b_{\gamma^{-1}(p)}$, with $\gamma = (p, p - 1, \ldots, 1)$. Thus this numerator, for the same w, is replaced by $\maj_s(\gamma^{-1}(\sigma))$, since $s \gamma = (x_p, x_{p-1}, \ldots, x_1)$. The latter is equal by Lemma 11 to $x_{p}^{-1} \maj_s(\sigma)$. Observe that the denominator is unchanged.

Thus the coefficient of w in $\kappa_n(a_p a_1 \cdots a_{p-1})$ is equal to that of w in $\kappa_n(a_1 \cdots a_p)$ multiplied by $\omega_n^{-\deg(a_p)}$. Thus $a_1 \cdots a_p - \omega_n^{-\deg(a_p)} a_p a_1 \cdots a_{p-1}$ is in the kernel of κ_n. This implies that the elements described in the theorem are in this kernel, for each primitive element b, but since primitive elements generate A, these elements are in the kernel, without restriction on b.

2. We now show that $x - \kappa_n(x)$ is a linear combination of elements as in the statement, for any x in A_n. This will imply the reverse inclusion of the statement and imply the theorem. It is enough to show this for $x = a_1 \cdots a_p$, where the a_i’s are homogeneous primitive elements. For this, it is enough to show that $x - \kappa_n(x)$ is a linear combination of elements of the form $a_{\sigma(1)} \cdots a_{\sigma(p)} - x_{\sigma(p)} a_{\sigma(1)} \cdots a_{\sigma(p)}$, $\sigma \in S_p$, with the same notations as above.

By Corollary 15, the coefficient of $a_{\sigma(1)} \cdots a_{\sigma(p)}$ in $\kappa_n(a_1 \cdots a_p)$ is $\maj_s(\sigma)/H_s(\sigma)$, where $H_s(\sigma) = \prod_{1 \leq t \leq p-1} (1 - x_{\sigma(1)} \cdots x_{\sigma(t)})$.

We deduce from linear algebra that an element \(u = \sum_{\sigma \in S_n} u_\sigma \sigma \) of the symmetric group algebra is in the subspace \(E \) spanned by the elements \(\sigma - x_{\sigma(p)} \sigma \gamma \) if and only if for any \(\sigma \) the sum
\[
\sum_{0 \leq i \leq p-1} (x_{\sigma(p-i+1)} x_{\sigma(p-i+2)} \cdots x_{\sigma(p)})^{-1} u_{\sigma^i}
\]
vanishes. Thus, it suffices to verify this in two cases: (i) \(\sigma \) is the identity of \(S_n \); (ii) \(\sigma \) is not a power of \(\gamma \).

Let \(u_\sigma = 1 - \overline{Maj}_s(\sigma) / H_s(\sigma) \) if \(\sigma \) is the identity, and let \(u_\sigma = -\overline{Maj}_s(\sigma) / H_s(\sigma) \) otherwise. Lemma 11 shows that
\[
\overline{Maj}_s(\sigma^i) = (x_{\sigma(p-i+1)} x_{\sigma(p-i+2)} \cdots x_{\sigma(p)})^{\overline{d}(\sigma)} \overline{Maj}_s(\sigma).
\]
Thus, in case (i)
\[
\sum_{0 \leq i \leq p-1} (x_{\sigma(p-i+1)} x_{\sigma(p-i+2)} \cdots x_{\sigma(p)})^{-1} u_{\sigma^i}
\]
\[
= \sum_{0 \leq i \leq p-1} (x_{p-i+1} \cdots x_p)^{-1} u_{\sigma^i}
\]
\[
= 1 - \sum_{0 \leq i \leq p-1} (x_{p-i+1} \cdots x_p)^{-1} \overline{Maj}_s(\gamma^i) / H_s(\gamma^i)
\]
\[
= 1 - \sum_{0 \leq i \leq p-1} (x_{p-i+1} \cdots x_p)^{-1} (x_{p-i+1} \cdots x_p)^{\overline{d}(id)} \overline{Maj}_s(id) / H_s(\gamma^i)
\]
\[
= 1 - \sum_{0 \leq i \leq p-1} 1 / H_s(\gamma^i) = 0
\]
by Corollary 10 with \(k = 0 \), since \(\overline{d}(id) = 1 \). Similarly, in case (ii)
\[
\sum_{0 \leq i \leq p-1} (x_{\sigma(p-i+1)} \cdots x_{\sigma(p)})^{-1} u_{\sigma^i}
\]
\[
= -\overline{Maj}_s(\sigma) \sum_{0 \leq i \leq p-1} (x_{\sigma(p-i+1)} \cdots x_{\sigma(p)})^{\overline{d}(\sigma)-1} / H_s(\sigma \gamma^i).
\]
This vanishes by Corollary 10: indeed, \(\sigma \) is not a power of \(\gamma \), so that \(2 \leq \overline{d}(\sigma) \leq p - 1 \).

All this implies that \(u \) lies in \(E \), and it follows that \(x - \kappa_n(x) \) is of the indicated form.

6. APPLICATIONS

In a free monoid, two words \(u, v \) are called conjugate if for some words \(x, y \) one has \(u = xy, v = yx \). Conjugation is an equivalence relation, whose
classes are called circular words. For example, the conjugation class of \(aabab\) is the circular word \(\{aabab, ababa, babaa, ababa, baaba\}\). A circular word is prime if none of its representants is a proper power; for example, the previous circular word is prime, and the circular word \(\{abab, baba\}\) is not prime. Note that it is customary, in combinatorics on words, to say “primitive word” instead of “prime word”; this could be misleading, since “primitive” applies here to a property of elements of a bialgebra.

It is a well-known fact that the homogeneous bases of free Lie algebras (in particular the Hall bases) are in bijection with prime circular words; this fact was apparently first observed by Meier-Wunderli [15]. This property is also a consequence of the fact that in the classical case, the kernel of the Klyachko idempotent is spanned by the elements

\[uv - \omega_n^{\deg(u)}vu,\]

with \(u, v\), homogeneous and \(\deg(uv) = n\); the latter fact was noted in an equivalent form by Garsia [8, Theorem 4.3], who observed that the collection of Lie polynomials \(\kappa_n(l)\), \(l\) Lyndon word of length \(n\), is a basis of the free Lie algebra. In other words, the free Lie algebra is as vector space canonically isomorphic, via the Klyachko operator, with the quotient of the tensor algebra by the subspace spanned by the elements of the form (2).

Theorem 16 extends this result to an arbitrary graded bialgebra \(A\).

An interesting particular case is when \(A\) is a free partially commutative algebra, or, equivalently, since \(A\) is naturally a bialgebra, when \(\text{Prim}(A)\) is a free partially commutative Lie algebra; see [5]. Lalonde has shown that bases of \(\text{Prim}(A)\) are in bijection with conjugation classes of prime elements of the corresponding free partially commutative monoid \(M\); see [13]. Recall that \(M\) is generated by a set \(X\), with relations of the form \(xy = yx\); an element of \(M\) is prime if it cannot be properly written as a product of two commuting elements in \(M\) (this extends the definition of a prime word when \(M\) is a free monoid). A conjugation class is an equivalence class of \(M\) for the equivalence relation \(\sim\) generated by the relations \(uv \sim vu, u, v \in M\) (unlike the case of the free monoid, these relations do not form a transitive relation, in general). A conjugation class is called prime if its elements are all prime, or, equivalently, if it contains a prime element, as is easily verified (or deduced from the proof below).

So one expects that if we choose a set \(L\) of representatives of the prime conjugation classes of \(M\) (for example, the set of Lyndon elements) (see [13]), then one has the following result.

Corollary 17. The set \(\kappa_{\deg(l)}(l), l \in L\), is a basis of the free partially commutative Lie algebra.

Proof. We know by [13] that this set has the desired number of elements in each graded component. So it is enough to show that they span \(\text{Prim}(A)\).
But M spans A. Note that by Theorem 16, $\kappa_n(uv) = \omega_n^{\deg(v)} \kappa_n(uu)$. This implies that if m, m' are conjugate, then $\kappa_n(m)$ and $\kappa_n(m')$ differ multiplicatively by a nonzero constant. Moreover, it shows that if m is not prime, then $\kappa_n(m) = 0$. Hence the set $\kappa_{\deg(l)}(l)$ spans the same set as $\kappa_{\deg(m)}(m), m \in M$; that is, it spans $\kappa_n(A) = \text{Prim}(A)$.

The previous result implies that the set $\kappa_{\deg(l)}(l), l \in L$, is linearly independent. Hence, if $\kappa_n(m) = 0$, m cannot be prime.

We may deduce from this a curious property of conjugation in M: suppose that one has a closed chain $m = m_0, m_1, \ldots, m_k = m$ of elements, such that at each stage $m_l = u_l v_l, m_{l+1} = v_l u_l$, for some nontrivial elements u_l, v_l of M. Then, with $n = \deg(m), \kappa_n(m_l) = \kappa_n(u_l v_l) = \omega_n^{\deg(v_l)} \kappa_n(v_l u_l) = \omega_n^{\deg(v_l)} \kappa_n(m_{l+1})$, which implies that $\kappa_n(m) = \kappa_n(m_0) = \omega_n^d \kappa_n(m_k) = \omega_n^d \kappa_n(m), d = \sum \deg(v_l)$. So, if m is prime, $\kappa_n(m)$ is nonzero and n must divide d.

The previous property is also a consequence of [4, 6]: indeed, we have $v_l m_l = m_{l+1} v_l$, so that $v_{k-1} \cdots v_0 m_0 = m_1 v_{k-1} \cdots v_0$. Hence m commutes with $v_{k-1} \cdots v_0$. Moreover, it follows from the relations $m_l = u_l v_l$ that the variables appearing in $v_{k-1} \cdots v_0$ lie in the set Y of variables appearing in m. Let N be the submonoid of M generated by Y. Then, since m is prime, the centralizer in N of m is, as submonoid, generated by m itself (see [4, 6]); this implies that n divides d.

7. APPENDIX

We show here the existence of a graded bialgebra A whose descent algebra has no coproduct satisfying the compatibility property (\ast) of Section 1.

We use results and calculations, known for the case where A is the tensor algebra over an infinite vector space (see [9, 16, 17, Chap. 9]), but which extend without difficulty in the general case. For any partition λ, denote by A^λ the subspace of A spanned by the elements $(a_1, \ldots, a_p) := (1/p!) \sum_{\sigma \in S_p} a_{\sigma(1)} \cdots a_{\sigma(p)}$, where each a_i is a homogeneous primitive element of degree λ and $\lambda = (\lambda_1, \ldots, \lambda_p)$. Then A is the direct sum of all the subspaces A^λ (a consequence of the theorem of Poincaré–Birkhoff–Witt). The projector onto $A^{(n)}$, parallel to the other subspaces, is the nth eulerian idempotent e_n; it is an element of the descent algebra S of the bialgebra A.

Now let $A = F(x, y)$, the bialgebra of noncommutative polynomials, with the variable x of degree 1 and y of degree 2.

We verify that one has the equality $f = g$, where $f = (e_3, [e_1, [e_1, e_2]])$ and $g = ([e_1, e_3], [e_1, e_2])$ (caution: Lie brackets and products are taken in the convolution algebra). Let $z = [x, y]$. Note that since A^1, A^2, A^3 are all
of dimension 1, spanned respectively by \(x, y, z\), \(A^{(3,2,1,1)}\) is of dimension 1, spanned by \((x, x, y, z)\).

By Lemma 9.25 in [17], one has \((e_3 \ast e_1 \ast e_1 \ast e_2)((x, x, y, z)) = 2zxyy\) and similar results for the other convolution products of \(e_3, e_2, e_1, e_1, e_2\). Thus \(f((x, x, y, z)) = 2(z, [x, [x, y]])\). Similarly \((e_1 \ast e_3 \ast e_1 \ast e_2)((x, x, y, z)) = 2zxyy\), and \(g((x, x, y, z)) = 2([x, z], [x, y])\). The latter is equal to \(2(z, [x, [x, y]])\), and we conclude that \(f, g\) coincide on \(A^{(3,2,1,1)}\). By the same result, they both annihilate elements of the form \((a_1, \ldots, a_p)\), with the notations above, when \(\lambda\) is not equal to \((3, 2, 1, 1)\). Thus \(f = g\).

Suppose now that the descent algebra \(\Sigma\) of \(A\) has a coproduct \(\Delta\) satisfying (*). Then the \(e_\nu\) are primitive for \(\Delta\). We apply \(\Delta\) to the equality \(2f = 2g\) and take its restriction to \(A_4 \otimes A_3\); we obtain \([e_1, [e_1, e_2]] \otimes e_3 = [e_1, e_3] \otimes [e_1, e_2]\). Apply this to \((x, x, y) \otimes z\): by the same lemma, we obtain \(2[x, [x, y]] \otimes z = 0\), a contradiction.

REFERENCES